
F Fermi National Accelerator Laboratory

FERMILAB-FN-678

Beam Instability Issues of the 50 GeV x 50 GeV Muon Collider Ring

K.Y. Ng

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

June 1999

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.



FN-678

BEAM INSTABILITY ISSUES OF

THE 50 GEV × 50 GEV MUON COLLIDER RING

King-Yuen Ng

Fermi National Accelerator Laboratory,∗ P.O. Box 500, Batavia, IL 60510

(March 1999)

(Final Version, September 1999)

Abstract

Single bunch instabilities for the 50 GeV × 50 GeV muon collider are discussed. An
impedance budget of the collider is estimated. A phase-slip factor of |η| = 1×10−6 is
desired to avoid excessive rf systems. Potential-well distortion of a smooth bunch can
be compensated by rf cavities. Accumulated growth in energy due to imperfections
and noises in the muon bunch can be reduced by smoothing the bunch distribution
before injection. The growth due longitudinal microwave instability is small because
of the compensated rf cavities, the finite lifetime of the muons, and the choice of a
small |η|. Beamloadings in the compensating rf cavities are large and suitable feed-
forward cancellation is required. Transverse microwave instability can be damped by
chromaticities and octupoles. Beam breakup can be cured by Balakin-Novokhatsky-
Smirnov damping in principle, but is nontrivial in practice. When beam breakup is
small, it can possibly be damped by a betatron tune spread in the beam.

∗Operated by the Universities Research Association, Inc., under contract with the U.S. Department of
Energy.
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I. INTRODUCTION

Muon colliders offer significant advantage in the production of Higgs bosons over electron

colliders. This is because the muon mass is mµ/me = 105.7/0.5110 = 206.8 times larger than

the electron mass, so that the production cross section is m2
µ/m

2
e = 4.28× 104 times larger.

Therefore, very probably, the first muon collider to be built will be 50 GeV on 50 GeV,

through which light Higgs bosons having masses around 100 GeV/c2 can be produced. In

order to attain the luminosity of 1 × 1032 cm−2s−1 for the accumulation of 1.9× 103 Higgs

bosons in a year, each of the colliding µ+ and µ− bunches needs to have an intensity of N =

4×1012 particles, rms bunch length σ` = 4 cm, and rms momentum spread σδ = 1.2×10−3 [1].

Unlike electron colliders, beamstrahlung is not a problem in the muon interaction region; it is

possible to have the momentum spread of the muon beams to be as small as σδ = 3.0×10−5.

As a result, there is another mode of operation of the muon collider at this small momentum

spread with rms bunch length σ` = 13 cm for the precision determination of the Higgs boson

mass. With such a high-intensity bunch and small momentum spreads, the study of beam

instabilities becomes a very important task.

II. IMPEDANCE BUDGET

Without detailed design of the collider ring, it is difficult to compute the coupling impe-

dances of the vacuum chamber. Nevertheless, an estimate is possible.

A. BEAM PIPE RADIUS

The muon collider ring has to be as small as possible so that there will be more colli-

sions between the positive and negative muon bunches before the muons decay appreciably.

As a result, superconducting magnets, which have higher pole-tip magnetic flux density are

used. To prevent the decay products from the muons from quenching the superconduct-

ing windings, the magnets are lined with a tungsten shielding having a thickness of about

3.5 cm. Thus the physical aperture of the colliding ring will not be large. For example, a

quadrupole in the arc of the ring has a magnetic flux density gradient of about 130 T/m. If

the quadrupole aperture is 6 cm so that the physical aperture at the shielding is only 2.5 cm,

the pole-tip magnetic flux density reaches 7.8 T already.

The collider lattice designed by Trbojevic and Ng [1] has a circumference of roughly

C = 2πR = 350 m. One half of the ring consists of the interacting region with focusing

triplets, where the betatron functions reach 1550 m, and the local chromaticity correction
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regions, where the betatron functions reach 100 m. The other half of the ring consists of arcs

and a long straight section, where the maximum horizontal and vertical betatron functions

are 19.57 m and 23.63 m, respectively, while the dispersion varies between −3.5 and +1.5 m.

There is also another better optimized version of the same lattice having dispersion between

−2.9 and +1.5 m, which we will use in this discussion. The rms σ` = 13 cm bunch with

rms momentum spread σδ = 3× 10−5 has a normalized rms emittance of 290 × 10−6 πm in

both the horizontal and transverse directions. Thus, the rms bunch radius is 3.81 mm in the

horizontal direction and smaller in the vertical. On the other hand, the rms σ` = 4 cm bunch

with rms momentum spread σδ = 1.2×10−3 has a normalized rms emittance of 85×10−6 πm.

Taking into account of the dispersion, the horizontal rms bunch radius is therefore 3.93 mm

and smaller in the vertical. Assuming an aperture of 5σ, the beam-pipe radius in the arcs

and long straight section can be set at b = 2 cm. For the other half of the ring, we can take

the average betatron function to be 100 m, and the average beam-pipe radius can be set at

b = 4 cm.

B. BEAM-POSITION MONITORS

Because of the limited physical aperture of the colliding ring, careful beam monitoring

becomes essential. Assume strip-line beam-position monitors (BPMs) like those of the Fer-

milab Tevatron are installed. Each BPM consists of 2 cylindrical strip-lines of radius b, each

subtending a full angle φ0 at the center of the beam pipe and of length `. Each strip-line

forms a transmission line of characteristic impedance Zc = 50 Ω with the beam-pipe wall

that bulges out, and is terminated at both ends by the resistors Zc to prevent resonances.

The longitudinal and transverse coupling impedances have been calculated to be [2]

Z‖ = 2MZc

(
φ0

2π

)2 (
sin2 ω`

c
+ j sin

ω`

c
cos

ω`

c

)
, (2.1)

Z⊥ =
c

b2

(
4

φ0

)2

sin2 φ0

2

Z‖
ω
FH,V , (2.2)

where FH and FV are the fractions of sets of BPMs, respectively, for the horizontal and

vertical, since each set of BPM strip-lines can work only for either the horizontal or the

vertical. At low frequencies, the impedances are inductive,

Z‖
n

= j2MZc

[
φ0

2π

]2
`

R
, (2.3)

Z⊥ =

[
4

φ0

]2
R

2b2
sin2 φ0

2

[
Z‖
n

]
. (2.4)
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At high frequencies, the reactive parts of the impedances oscillate between inductive and

capacitive; for example, the first zero occurs at frequency f = c/(2`) = 1.50 GHz, where

the length of the strip-line is assumed to be ` = 10 cm. The real parts rise from zero

quadratically with frequency for Z‖ and linearly for Z⊥, peak at 1.50 GHz, and oscillate

afterwards.

Note that these impedances are roughly independent of the circumference of the collider

ring, because more BPMs will be needed for a larger ring. The betatron tunes are roughly

νβ = 8.13 in the horizontal and 6.24 in the vertical. To correct the orbit, one needs about

4 BPMs per betatron wavelength. Therefore, we are going to use M = 56 pairs of strip

lines, 32 for the horizontal and 24 for the vertical, or FH = 32/56 and FV = 24/56. In the

Tevatron, each BPM has a length of ` = 18 cm and a full subtending angle φ0 = 110◦. Here,

the bunch lengths are relatively shorter than the Tevatron bunches which have rms length

∼ 16 cm. Thus, we use 10-cm strip-lines instead. Also the intensity of a Tevatron bunch

is around 5 × 1011 particles, much weaker than that of the muon bunches. We therefore

imagine that strip-lines with smaller subtending angle, for example φ0 = 75◦, will be able to

pickup enough beam signals for orbit monitoring. With these BPMs parameters, we obtain

Z‖/n = j0.44 Ω and Z⊥ = j0.075 and j0.056 MΩ/m, respectively, for the horizontal and

vertical BPMs. In computing the transverse impedance, we have assumed that the strip-line

radius is b = 2 cm for half of the ring and b = 4 cm for the other half. It is worthwhile to

point out that, while the transverse impedance is inversely proportional to the square of the

strip-line radius, the longitudinal impedance is independent of the strip-line radius.

C. BELLOWS

The impedances of the bellows are roughly proportional to the ring circumference. For

the Tevatron, which has a circumference of 6.28 km, the contributions at low frequencies are

Z‖/n ∼ j0.4 Ω and Z⊥ ∼ j0.4 MΩ/m [3]. The 50 GeV×50 GEV muon collider is about

18 times smaller. However, there are many more elements per unit length in the muon

colliders. Here, we scale the impedances by a factor of 10 instead to get Z‖/n ∼ j0.04 Ω and

Z⊥ ∼ j0.04 MΩ/m. We like to point out that a beam-pipe radius of b ≈ 4 cm has been used

in the Tevatron. Here, the beam pipe radius is smaller. As a result, the impedances may be

larger and extend out to higher frequencies.

The Tevatron bellows are unshielded. We do hope that these impedances would be much

smaller if the bellows in the muon collider were shielded. However, in the electron-positron

colliding ring LEP at CERN, the bellows, although shielded, still contribute roughly 40%

to the longitudinal coupling impedance when the rms bunch length is 1 cm [4]. Therefore,
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it is unclear how much the shielded bellows in the muon collider will contribute to the

longitudinal and transverse coupling impedances. Careful design of the shielded bellows and

more detailed computation are required to answer this question.

D. RESISTIVE WALL

For the resistive walls of the vacuum chamber, the contributions to the impedances are

Z‖
n

=
sgn(n) + j

2b

[
Z0ρC

π|n|

]1/2

, (2.5)

Z⊥ =
C

πb2

[
Z‖
n

]
, (2.6)

where Z⊥ is to be evaluated at n+νβ, νβ is the betatron tune, and n the revolution harmonic.

For an aluminum beam pipe with resistivity ρ = 0.0265 µΩ-m, we obtain

Z‖
n

= [sgn(n) + j]0.62|n|−1/2 Ω , (2.7)

Z⊥ = [sgn(n) + j]0.13|n + νβ|−1/2 MΩ/m , (2.8)

using b = 2 and 4 cm for each half of the ring. Thus, at the beam-pipe cutoff frequency,

fc = 2.405c/(2πb) = 5.74 GHz, c being the velocity of light, the resistive-wall contributions

become negligibly small compared with the contributions of the BPMs.

E. BROADBAND IMPEDANCE MODEL

For the injection of the positive muon bunch and negative muon bunch, we will need at

least two Lambertson magnets and two kickers, which will usually have significant contribu-

tions to the coupling impedances. Also there is a big variation of betatron functions around

the ring, resulting in many transitions in the cross section of the vacuum chamber. These

transitions will also have significant contributions to the coupling impedances.

Without detailed knowledge of the vacuum chamber, it will be advisable to assume a

broadband impedance model for the ring, or

Z‖ =
R‖

1− jQ
(
ωr
ω
− ω

ωr

) , (2.9)

Z⊥ =
c

ω

R⊥

1− jQ
(
ωr
ω
− ω

ωr

) . (2.10)
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Here, we choose the quality factor Q = 1 and the angular resonant frequency ωr = 50 GHz

(or fr = 7.96 GHz) for both the longitudinal and transverse. The resonant frequency is

about 38% higher than the cutoff frequency fc for a 2 cm radius circular beam pipe. We

choose a higher resonant frequency because we are aware that in both the damping rings

at SLAC and the electron-positron colliding ring LEP at CERN, when detailed small high-

frequency contributions are added up, Z‖/n does not roll off even at frequency f = 10 GHz

(or ω = 63 GHz) [5]. From the analysis above, we choose here the shunt impedances R‖ and

R⊥ so that Z‖/n = 0.5 Ω and Z⊥ = 0.1 MΩ/m at the angular resonant frequency. Then, we

also have ImZ‖/n = 0.5 Ω and ImZ⊥ = 0.1 MΩ/m at lower frequencies. We believe that it

will be difficult to make the impedances smaller than these values in such a small ring.

III. PHASE-SLIP FACTOR

Longitudinally, the worst fast collective growth is usually the microwave instability. The

Boussard-modified Keil-Schnell stability criterion for a Gaussian distributed bunch is [6]∣∣∣∣∣Z‖n
∣∣∣∣∣ ≤ 2π|η|Eσ2

δ

eIpk
, (3.1)

where η is the phase-slip factor, Ipk is the peak current, E the muon energy, and e its

charge. Taking the σ` = 4 cm bunch with σδ = 1.2× 10−3, stability can be assured only if

|η| > 0.00212. Neglecting the influence of coupling impedance, to keep such a bunch in an

rf bucket, the synchrotron tune will be

νs =
|η|Rσδ
2πσ`

= 3.54× 10−3 . (3.2)

Assuming that the bucket height will be k = 5 times the rms momentum spread of the

bunch, the rf harmonic is

h =
[
C

πkσ`

]
integer

= 557 . (3.3)

Thus, the rf voltage will be

Vrf =
2πEν2

s

h|η| = 3.34 MV , (3.4)

which is very large, and will be much larger when the longitudinal impedance is included.

Another choice of operation is to make |η| as small as possible. Although we have to give

up Landau damping, hopefully, the growth rate, which is proportional to
√
|η|, may be slow

enough and cause insignificant harm. Here, we are talking about the total spread in η, since
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the latter is a function of momentum spread δ. The phase-slip factor η that records the slip

in revolution period T from the on-momentum revolution period T0 can be expanded as

∆T

T0
= ηδ = η0δ + η1δ

2 + η2δ
3 + · · · . (3.5)

On the other hand, the length of the closed orbit C is also a function of the momentum

spread, and can be expanded around the length of the on-momentum orbit C0 according to

C = C0(1 + α0δ + α1δ
2 + α2δ

3 + · · · ) , (3.6)

where αi is the i-th order of the momentum compaction. It is then not difficult to obtain

η0 = α0 −
1

γ2
, η1 = α1 −

η0

γ2
+

3β2

2γ2
, η2 = α2 −

η1

γ2
+

3β2η0

2γ2
+

(1−5β2)β2

2γ2
, · · · , (3.7)

where γ = 472.223 and β =
√

1− 1/γ2 are the relativistic Lorentz factors of the on-

momentum 50 GeV muons. To reduce the spread in η up to about 3σδ, we need to control

the contribution of the higher-order momentum compaction also. The first-order effect of

sextupoles controls η1, the first-order effect of octupoles controls η2, etc. The experience

with the 2 TeV×-2 TeV muon collider lattice [7] indicates that we need to control up to

the contribution of η2 and that it will be rather hard to reduce the spread of |η| to below

1× 10−6. As a result, this value of |η| will be used in our discussion below. In fact, as will

be clear later, an |η| smaller than 1×10−6 will not help in lowering the growth of the energy

spread of the muon bunch. A particle at an energy spread of 3σδ in the 4-cm bunch will

drift by 4.2 ps (0.13 cm) only in 1000 turns. Note that the muons have a e-folding lifetime of

τ0 = 2.19703 µs at rest. At 50 GeV, however, the e-folding lifetime is τ = γτ0 = 1039.69 µs

or nτ = 890.542 turns in a ring of circumference 350 m. Therefore, we only care about

roughly the first 1000 turns after the muon bunches are injected into the collider ring. This

is another reason why such a small |η| is used, because no bunching rf will be necessary.

However, this is not true in the presence of the longitudinal coupling impedance.

IV. POTENTIAL-WELL DISTORTION AND

MICROWAVE INSTABILITY

A. WAKE POTENTIAL COMPENSATION

Particles in the high-intensity bunch will be affected by the wake from the particles

ahead. Assume a linear Gaussian distribution for the bunch and a broadband impedance
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Figure 1: (color) Wake potential, compensating rf voltages, and net voltage seen

by particles in the 4-cm bunch at injection. The compensating rf is the sum of two

rf’s represented by red and magenta dashes.

for the vacuum chamber with Q = 1 and Z‖/n = 0.5 Ω at the angular resonant frequency

ωr = 50 GHz. The wake function at a distance z behind a unit source charge is

W0(z) = −ωrR‖
Q

e−αz/c
[
cos

ω̄z

c
− α

ω̄
sin

ω̄z

c

]
, (4.1)

where R‖ = nrReZ‖/n is the shunt impedance or the impedance at the resonant harmonic

nr or angular resonant frequency ωr as given by Eq. (2.9), α = ωr/(2Q) is the damping

rate of the wake, ω̄ =
√
ω2
r − α2 is the shifted resonant angular frequency, and the particle

velocity has been taken as c. The wake potential seen by a particle inside a Gaussian bunch

of rms length σ` at a distance z behind the bunch center is

V (z) = e
∫ z

−∞
dz′ρ(z′)W0(z − z′) , (4.2)

where ρ(z) is the bunch distribution. The integration gives

V (z) = − eNωrR‖
2Q cosφ0

Re ejφ0−z2/(2σ2
`
)w

[
σ`ωrejφ0

c
√

2
− jz√

2σ`

]
, (4.3)

where N is the total number of particles in the bunch, sinφ0 = 1/(2Q), and w is the complex

error function.
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At such a high resonant frequency, the wake potential seen by a bunch particle is roughly

equal to the derivative of the Gaussian with a maximum and minimum of ∆E0 ∼ ±0.83 MV,

as shown in Fig. 1. Therefore, taking into account the reduction in intensity due to the decay

of the muon, some particles will gain and some will lose in nf = 1000 turns as much as

∆E = ∆E0

∫ nf

0
e−n/nτdn = ∆E0 nτ

(
1− e−nf/nτ

)
= 499 MeV , (4.4)

where nτ = γτ0f0 = 890.542 is the e-folding lifetime in turns of the 50 GeV muons in the

collider ring, with neq = nτ
(
1− e−nf /nτ

)
= 601 serving conveniently as an equivalent number

of turns in the presence of the muon decay. On the other hand, the designed rms energy

spread is only 60 MeV. With such a large energy spread, there will be some drift in time,

especially in the situation when a larger |η| is used. Thus, there may be bunch lengthening

as well as particle loss due to the limited physical aperture of the vacuum chamber. Kim,

Wurtele, and Sessler [8] suggested to compensate this incoherent energy change by using rf

voltages. If the linear distribution is parabolic, a sinusoidal rf of wavelength longer than the

bunch length will compensate for this bunch distortion due to the wake potential. If the

linear distribution is cosine-square, a sinusoidal rf with wavelength exactly equal to the bunch

length will do the job. For a Gaussian distribution, one needs a combination of sinusoids. A

beam particle at a distance z behind the bunch center should see the rf voltage

Vrf(z) =
n∑
i=1

Vi sin
(
ωiz

c
+ ϕi

)
. (4.5)

For example, we try to use two rf’s to compensate up to ±3σ` of the bunch. At injection

of the 4-cm bunch, the optimum parameters are, for frequencies ω1/(2π) = 1.290 GHz and

ω2/(2π) = 2.673 GHz, for voltages V1 = 717.4 kV and V2 = 253.4 kV, and for phases

ϕ1 = 170.55◦ and ϕ2 = 159.33◦, as shown in Fig. 1. These rf voltages have to decrease turn

by turn according to the decay of the muons. Note that the compensation rf frequencies are

not completely free parameters for optimization; they have to be harmonics of the revolution

frequency. Tracking was done for 1000 turns using 2× 106 macro-particles, populated ran-

domly according to a bi-Gaussian distribution in the longitudinal phase space. The tracking

code is a variation of TRISIM developed by Sabbi [9], where triangular bins are used. The

half triangular bin width is wb = 15 ps (0.45 cm) which is fine enough for resonant frequency

up to fr = 1/(2wb) = 33 GHz or ωr = 209 GHz. Such narrow bin width is required because

we must have reasonable number of bins for ∼ ±3σ` to represent the bunch. Near the center

of the bunch, the number of macro-particles per bin is ∼ 80, 000 (and ∼ 28, 000 for the 13-cm

bunch). The tracking result for 1000 turns is shown in Fig. 2. We see that the compensation

rf’s do a good job by keeping the muons bunched without any increase in bunch length. It
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Figure 2: Simulation of the 4-cm bunch of 4× 1012 muons subject to a broadband

impedance with quality factor Q = 1 and Z‖/n = 0.5 Ω at the resonant angular

frequency ωr=50 GHz. The half-triangular bin width is 15 ps (0.45 cm) and 2×106

macro-particles are used. Top plot shows initial distribution with σE=60 MeV and

σ`= 4 cm. Lower plot shows distribution after 1000 turns with compensating rf’s

initially at ω1/(2π)=1.290 GHz and ω2/(2π)=2.673 GHz, voltages V1 =717.4 kV

and V2 = 253.4 kV, and phases ϕ1 = 170.55◦ and ϕ2 = 159.33◦. The rf voltages

decrease according to the decay of the muons.
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Figure 3: (color) Wake potential seen by the simulated bunch is shown by the red

curve, which differs slightly from the wake potential of an ideal smooth Gaussian

bunch shown in blue dashes. The difference shown by the magenta solid curve

represents the random fluctuation of the finite number of macro-particles.

is important to point out that this rf compensation only compensates the wake potential

between ±3σ` of the bunch. Particles outside this region will acquire large energy increase

or decrease and will probably be lost. However, this loss represents only about 0.27% of the

beam particles. Compensation to more than 3σ` is definitely possible, if, for example, rf’s

with 3 or more frequencies are used.

Coming back to Fig. 2, we see some ripples along the bunch. They are not due to

inexact compensation of the theoretical wake potential, because Fig. 1 shows that the net

voltage seen has ripples with wavelength about 210 ps and ∼ ±0.008 MV at injection or

∼ ±4.8 MV for 1000 turns. On the other hand, Fig. 2 shows ripples of ∼ ±40 MeV with

wavelength of ∼ 125 ps, corresponding to the resonant frequency of the impedance. These

ripples actually come from the deviation of the actual bunch distribution from being exactly

Gaussian. Figure 3 shows the wake potential of the simulated bunch in the solid red curve.

We see that it differs from the ideal wake potential curve of a smooth Gaussian bunch shown

by blue dashes. The difference is the magenta solid curve. It is these fluctuations that give

rise to the ripples in the bunch after 1000 turns. This clearly illustrates that the rf’s can only

compensate for potential-well distortion for a smooth bunch and cannot cope with a bunch
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Table I: Two-sinusoidal fits for potential-well compensation.

Vi (kV) harmonic fi (GHz) ϕi (rad)

4-cm bunch 717.4 1506 1.290 2.9767

253.4 3249 2.673 2.7808

13-cm bunch 65.40 445 0.3854 3.0927

24.74 930 0.7966 3.0418

having imperfections or noises. It is worthwhile to point out that although the statistical

particle fluctuations near the center of the bunch are ∼ 0.35%, the magenta curve in Fig. 3

shows much larger fluctuations. This is because the wake function for a point charge is

approximately the same as the derivative of a delta-like function having a width of the order

the wavelength of the resonant frequency of the impedance. In other words, the magenta

curve shows the slopes of the statistical particle fluctuations. This also explains why the

fluctuations have roughly the same frequency of the impedance. In reality, the impedance

of the ring is never an ideal broadband; it may contain, for example, other sharp and broad

resonances. All these deviations from the broadband impedance should also show up as the

residual wake in the magenta curve of Fig. 3 for a real collider ring.

For the 13-cm bunch, the wake potential of the ideal smooth Gaussian is shown in

Fig. 4 together with the sum of the compensation rf’s, which at injection are at ω1/(2π) =

0.3854 GHz and ω2/(2π) = 0.7966 GHz, with V1 = 65.40 kV and V2 = 24.74 kV, and

ϕ1 = 177.20◦ and ϕ2 = 174.28◦. These numbers are listed in Table I for the two bunches.

Figure 5 shows initial particle distribution of the 13-cm bunch which has a rms energy

spread of 1.5 MeV. The lower plot shows the simulation result after 1000 turns with the

compensating rf’s turned on and with the rf voltages reducing according to the decay of the

muons. We see that the momentum distribution is around ±10 MeV, about ±7σδ, and is

definitely too large to be acceptable. Here, we use the same number of macro-particles, the

same bin width, and the same broadband impedance as in the situation of the 4-cm bunch.

The deviation of the wake potential of the simulated bunch from that of the ideal smooth

Gaussian bunch is shown in Fig. 6. Again, the fluctuations are due to the finite number

of randomly Gaussian-distributed macro-particles. In Ref. [8], this growth of momentum

spread corresponding to the resonant frequency of the impedance is not seen in any of the

simulations, although a much smaller number of macro-particles were used there. One of

the reasons is that the macro-particles were quietly populated rather than randomly, thus

smoothing out all the energy jitters or seeds for any growth development. The other reason
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Figure 4: (color) Wake potential, compensating rf voltages, and net voltage seen

by particles in the 13-cm bunch at injection. The compensating rf is the sum of

two rf’s represented by red and magenta dashes.

comes from the fact that a much smaller longitudinal impedance, Z‖/n = 0.1 Ω at resonant

angular frequency ωr = 10 GHz, had been used, thus slowing the growths.

It appears from Figs. 2 and 5 that the accumulated growth in energy spread is much

worse for the 13-cm bunch than the 4-cm bunch. In fact, this is not true. For the 4-cm

bunch, the growth is about ±160 MeV after 1000 turns. But the initial rms energy spread

is 60 MeV. Taking the original spread to be 2σ, the actual accumulated growth is actually

about ±40 MeV. On the other hand, the growth for the 13-cm bunch is ±10 MeV. But the

initial rms energy spread is only 1.5 MeV. Thus, the actual growth is only about ±7 MeV

after subtracting 2σ. In fact, we have been using the same bin size and the same number

of macro-particles in the two simulations. Thus, the statistical particle fluctuations or seed

will be
√

13/4 larger for the 13-cm bunch. Otherwise the growth would have been only√
4/13×7 = 3.9 MeV instead. However, relative to its initial energy spread, the accumulated

energy growth of the 4-cm bunch is not large and is acceptable, while that for the 13-cm

bunch is too large and is not acceptable.
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Figure 5: Simulation of the 13-cm bunch of 4×1012 muons subject to a broadband

impedance with quality factor Q = 1 and Z‖/n = 0.5 Ω at the resonant angular

frequency ωr=50 GHz. The half-triangular bin width is 15 ps (0.45 cm) and 2×106

macro-particles are used. Top plot shows initial distribution with σE=1.5 MeV and

σ`=13 cm. Lower plot shows distribution after 1000 turns with compensating rf’s

initially at ω1/(2π)=0.3854 GHz and ω2/(2π)=0.7966 GHz, voltages V1 =65.40 kV

and V2 = 24.74 kV, and phases ϕ1 = 177.20◦ and ϕ2 = 174.28◦. The rf voltages

decrease according to the decay of the muons.

14



Figure 6: (color) Wake potential seen by the simulated bunch is shown by the red curve,

which differs slightly from the wake potential of an ideal smooth Gaussian bunch shown

in blue dashes. The difference shown by the magenta solid curve represents the random

fluctuation of the finite number of macro-particles.

B. MICROWAVE INSTABILITY

Besides the accumulated growth from the uncompensated wake potential that we dis-

cussed above, there is still the issue of microwave instability. Even if the compensating rf

systems can compensate for 100% of the wake potential of the realistic bunch, this only

solves the problem of potential distortion, but not microwave instability. This is because

the bunch linear distribution can be decomposed into ρ = ρ0 + ρ1, where ρ0 is the time-

independent unperturbed distribution which goes into Eq. (4.2) to be compensated by the

rf systems. On the other hand, the perturbed distribution ρ1 is time-dependent. It repre-

sents an infinitesimal deviation from the bunch distribution ρ0. When it is substituted into

Eq. (4.2), it can excite a voltage containing the collective modes of instability oscillating

at some eigenfrequencies, thus enhancing the growth of those frequency components, unless

the system is stable against perturbation. In other words, the accumulated growth due to

potential-well distortion is a static solution while microwave instability is a time-dependent

solution. Although the compensating rf systems cannot lower the growth rate of microwave

instability, they do, however, reduce the total amount of growth by reducing the amount of

ripples inside the bunch, which provide the seeds of the growth.
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The Boussard-modified Keil-Schnell criterion can be rewritten in the form

nrω0

√
|η|Ipk|Z‖/n|

2πeE
≤ nrω0|η|σδ , (4.6)

ω0/(2π) being the revolution frequency and nr = ωr/ω0 the resonant harmonic. The left

side is the raw microwave growth rate without damping and the right side the Landau

damping rate. Substituting into Eq. (4.6), we find that the Landau damping rates on the

right side are much smaller than the left side for the two bunches. Thus, the left side is a

good representation of the actual e-folding growth rate, which amounts to, for the 4-cm and

13-cm bunches, respectively, ∼ 2.76× 103 and ∼ 1.53× 103 s−1, or or ∼ 0.32% and ∼ 0.18%

per turn.

Note that the accumulated growth from the uncompensated fluctuation of jitters, etc, is

quite different from the growth due to microwave instability. For the former, the growth in

energy fluctuations every turn will be exactly by the same amount as given by the energy

jitters in Fig. 3 or 6 (if muon decay is neglected). This is because the wake potential of

particles along the bunch does not depend on the energy distribution of the bunch, but only

on its linear density and the latter is essentially unchanged since the particles do not drift

much during the first 1000 turns. On the other hand, the initial growth due to microwave

instability at a particular turn is proportional to the actual energy fluctuation at that turn

and the evolution of the growth is exponential. Thus, although the growth due to microwave

instability is small at the beginning, it will be much faster later on when the accumulated

energy fluctuations become larger.

It is important to point out that the above mentioned growth rates are for only the

resonant-frequency component of the bunch because Eq. (4.6) is in the frequency domain.

Since there are many lower-frequency components in the bunch other than the resonant

frequency; the growth rates for them are proportional to their frequencies and are therefore

considerably smaller. As a result, the actual growth rates of the energy spread or bunch area

due to microwave instability will be smaller than the estimation reported above.

We ran simulations by turning off the phase-slip factor to zero and see negligible differ-

ence from the lower plots of Figs. 2 and 5, showing that longitudinal microwave instability

plays nearly no role here. However, when the simulations were performed for a few times the

e-folding lifetime of the muons, we did see some small amount of extra growth in momentum

spread that can only be attributed to microwave instability. As was stated before, the simu-

lations depend very sensitively on the initial imperfection of the bunch. For example, when

1× 106 macro-particles are used instead, the amount of growth due to microwave instability

becomes more obvious, as a result of the larger statistical particle-number fluctuation. In
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any case, we believe that the amount of growth due to microwave instability will always

be less important than the accumulated growth due to uncompensated bunch imperfection.

This is mainly due to the compensated rf’s, the finite lifetime of the muons, and the choice

of the small |η|.
Although the growths due to either energy-fluctuation accumulation or microwave insta-

bility can appear rather violent as is shown in, for example, Fig. 5, the local momentum

spread along the bunch remains unchanged. This arrives from the fact that the beam is very

close to the transition energy. There is negligible phase drift and therefore no phase-space

dilution due to filamentation will occur. As a result, the amount of Landau damping given

by the right-hand side of Eq. (4.6) will not be increased even when the growth has developed

for a long time.

Microwave instability for a bunch beam close to the transition energy is an extremely

important and interesting issue, and deserves much more investigation. Further results and

comments will be devoted to a future publication.

It is important to point out that the lower plots of Figs. 2 and 5 do not indicate the

actual particle distributions of the future muon bunches after 1000 turns. The actual growth

depends on the initial linear bunch shape, and the deviation of the coupling impedance from

being broadband. If the initial bunch shape is extremely smooth and the coupling impedance

is close to a broadband, the total growth in 1000 turns may be very minimal. On the other

hand, if the initial bunch distribution and the coupling impedance as a function of frequency

are very rugged, it will provide a large seed and the final distribution after 1000 turn can

be much more violent than those depicted in Figs. 2 and 5. Therefore, to prevent excessive

growth in the energy spread, methods must be devised to smooth the bunch distribution

after ionization cooling and linac acceleration. To accomplish this, one needs to understand

the source of noise fluctuation in a particle bunch. A measurement of the Tevatron bunch at

Fermilab shows in Fig. 7 a spectral tail which is flat and extend up to a few GHz without any

sign of rolling off, although the spectrum for the ideal smooth Tevatron bunch should roll off

rapidly around 1 or 2 GHz [10]. Such fluctuations have also been considered as the source

of the ear-growing bunch profile observed, where the jitters around the synchronous phase

give rise to small beamlets which rotate around the main bunch with possibly multiples

of the synchrotron frequency [11]. Although thermal noise has been suggested as a source

of the fluctuation, the full understanding is still unknown. During the commissioning of

the Fermilab Main Injector, the bunches exhibit very nonsmooth profiles soon after their

injection. Some typical profiles are shown in Fig. 8. In the muon collider ring, the muon

bunches inherit all their bunch imperfection from the processes of pion decay, muon cooling,
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Figure 7: Beam current power spectrum of the Tevatron, measured at each har-

monic of the RF frequency.

rf rotations, and muon acceleration. One expects the noises and imperfections of the muon

bunches can be worse than the Tevatron bunches if no special action is taken.

Further reduction in impedance will lower the accumulated growth of the energy jitters.

Since the growth increases with frequency also, one must try to smooth the vacuum chamber

so that the impedance contribution at high frequencies and sharp resonances will be reduced

to a minimum. On the other hand, reduction in the phase-slip factor will not help much

because we believe that microwave instability would play only a secondary role here when

|η| <∼1× 10−6.

C. RF CAVITIES AND BEAMLOADING

For a cavity of gap length ` and resonant frequency ω/(2π), the rf voltage at time t is

V (t) = V0 sin(ωt+ ϕ) , (4.7)

where V0 is the peak rf voltage. Suppose the center of the bunch passes through the center

of the cavity gap at time t = 0. A beam particle at distance z at t = 0 behind the the

bunch center travels according to z′ = −z+ ct. Thus, the integrated voltage sampled by this
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Figure 8: (color) Main Injector bunches ∼ 30 ms after the injection of the 6th

batch at 8-turn booster injection, corresponding to an intensity of about 2.4×1010

protons per bunch. Consecutive traces are 12 turns (∼ 130 µs) apart. Bunches

directly from the booster seem to be clean and well behaved.
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particle across the gap of the cavity is

∫ `/2

−`/2
V (t)dz′ =

∫ `/2

−`/2
dz′V0 sin

(
ωz′

c
+ ϕ+

ωz

c

)
= V0` sin

(
ωz

c
+ ϕ

){
sin[ω`/(2c)]

ω`/(2c)

}
. (4.8)

The actual voltage seen by the particle has been diminished by the transit factor in the

curly-bracketed term. Care must be exercised in choosing the length of the cavity so that

the transit factor will not be too small. Take the 4-cm bunch as an example, a cavity length

of ` = 7.5 cm leads to transit factors of 0.8373 and 0.3731 for the resonant frequencies 1.290

and 2.673 GHz. Then, the actual peak voltages in the two cavities have to be increased to

0.8568 and 0.6793 MV, respectively, for the two frequencies, and the electric fields at the gaps

become 11.42 and 9.057 MV/m. Such accelerating gradients are only 0.36 and 0.20 times

the Kilpatrick limits [12], and should therefore be achievable in room-temperature cavities.

For the 13-cm bunch, because the compensating sinusoids are of frequencies 0.3812 and

0.7966 GHz, much lower than those for the 4-cm bunch, the transit factors for cavities having

the same length of ` = 7.5 cm are 0.9851 and 0.9359, respectively. The actual peak voltages

in the two cavities will be 66.39 and 26.43 kV, and the electric fields 0.885 and 0.362 MV/m.

The latter are only 0.046 and 0.014 times the Kilpatrick limits for the two frequencies.

Since the fundamental modes of the cavities are used for wake-potential compensations,

the muon beams also excite these modes of oscillation when passing through the cavities.

This is called transient beamloading. If the beamloading voltages are high, the muon bunches

will be very much affected. The shunt impedance Rs divided by the quality factor Q is a

geometric factor of the cavity independent of the wall resistivity of the cavity. When wall

resistivity is small, perturbation calculation for the pill-box cavity gives for the TM0n0 mode,

Rs

Q
=

8Z0

x2
0nJ

′2
0 (x0n)

sin2[ω0n0`/(2c)]

ω0n0`/(2c)
, (4.9)

where x0n0 is the n-th zero of the Bessel function J0, ω0n0 = x0n0c/R the resonant angular

frequency of the mode, and R the radius of the cavity. The beamloading voltage seen by a

particle at a distance z behind the bunch center is exactly the same as Eq. (4.3), or

V (z) = − eNωrRs

2Q cosφ0
Re ejφ0−z2/(2σ2

` )w

[
σ`ωrejφ0

c
√

2
− jz√

2σ`

]
, (4.10)

where now ωr = ω010 and sinφ0 = 1/(2Q) with Q being the quality factor of this cavity.

For the fundamental or TM010 mode, x010 = 2.4045. Note that eNω010Rs/Q is a measure of

the beamloading voltage if the bunch is of zero length and the quality factor of the resonant

impedance is very high. This can also be seen from Eq. (4.10). When σ` → 0, the argument
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Table II: Beamloading voltages for the 4 compensating cavities.

Resonant Frequency eNω010Rs/Q Beamloading Beamloading

(GHz) (MV) Max (MV) Min (MV)

4-cm bunch 1.290 2.270 1.249 −0.647

4-cm bunch 2.673 2.097 0.222 −0.134

total 1.140 −0.699

13-cm bunch 0.381 0.274 0.158 −0.083

13-cm bunch 0.797 1.082 0.143 −0.096

total 0.155 −0.145

of the complex error function becomes imaginary and the complex error function behaves as

lim
σ`→0

w

(
−jz√

2σ`

)
= lim

σ`→0

2√
π
ez

2/(2σ2
`
)
∫ ∞
− z√

2σ`

e−t
2

dt =


0 z < 0 ,

1 z = 0 ,

2 z > 0 ,

(4.11)

and the transient beamloading voltage becomes

V (z) =



0 z < 0 (head) ,

− eNωrRs

2Q cosφ0
z = 0 (center) ,

−eNωrRs

Q cosφ0

z > 0 (tail) .

(4.12)

With finite bunch lengths, the beamloading voltages will be smaller. We assume that during

the operation mode of the 4-cm bunch, the gaps of the compensating cavities for the 13-

cm bunch will be shorted and vice versa. Assuming the quality factor to be Q = 100, the

beamloading voltages for the 4-cm bunch operation and 13-cm bunch operation are shown,

respectively, in Figs. 9 and 10. Table II shows eNω010Rs/Q and the maxima and minima of

the beamloading voltages of the four cavities. We assume that all higher-order modes of the

cavities can be eliminated by designing absorbers or dampers. The beamloading voltages

will be smaller if the quality factors of the cavities are smaller. However, a quality factor of

Q = 100 is already very low for a non-ferrite-loaded cavity.

Note that these beamloading voltages are comparable to the wake potential voltages. In

other words, the compensating cavities introduce new wake potentials comparable to those

which they are supposed to compensate. These beamloading voltages must be removed. If
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Figure 9: Beamloading voltages seen by particles in the 4-cm bunch as they traverse

the wake-potential compensating cavities. The particles are at distance behind the

bunch center in unit of rms bunch length.

Figure 10: Beamloading voltages seen by particles in the 13-cm bunch as they

traverse the wake-potential compensating cavities. The particles are at distance

behind the bunch center in unit of rms bunch length.
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not, the compensating cavities will have not been doing their jobs properly. One suggestion

is to optimize the parameters, such as frequencies, voltages, and phases, of these cavities,

so that they will cancel not only the wake potential due to the longitudinal coupling impe-

dance of the vacuum chamber, but also the wake potential or transient beamloading of the

compensating cavities themselves as well. This, however, appears to be impossible, because

the beam loading voltages are of different frequencies from the compensating rf voltages.

Another suggestion is to use a feed-forward system. First, let us understand how the

transient beamloading occurs. As the bunch of say µ+ passes through the cavity gap, a

negative charge equal to that carried by the bunch will be left by the image current at the

upstream end of the cavity gap. Since the negative image current will resume from the

downstream end of the cavity gap following the bunch, an equal amount of positive charge

will accumulate there. Thus, a voltage will be created at the gap opposing the beam current

and this is the transient beamloading voltage as illustrated in Fig. 11. For an infinitesimally

short bunch, this transient voltage is

Vt ∼
eN

C
=
eNωrRs

Q
, (4.13)

where C is the equivalent capacitance across the gap of the cavity. For a bunch of finite

length, the transient beamloading voltages seen by different parts of the beam will become

what is shown in Figs. 9 and 10. The Fermilab future low-energy booster which is destined

to be used as the proton driver for the muon collider project has rather strong transient

beamloading voltage. Griffin [13] suggested to use a feed-forward system, which will monitor

the linear charge distribution of the bunch and deliver via a tetrode the same amount of

negative charge density to the downstream end of the cavity gap so as to cancel the positive

charge there and thus alleviating the transient beamloading. This feed-forward solution for

the proton driver is illustrated in Fig. 12. Some similar scheme should also work to solve the

beamloading issues for the compensating cavities in the muon colliding ring.

V. TRANSVERSE MICROWAVE INSTABILITY

The Keil-Schnell-like stability criterion for transverse microwave instability can be written

as [14]
eIpk|Z⊥|c

4πEνβ
≤ 4
√

2ω0

π
|(nr − νβ)η + ξ|σδ , (5.1)

where the left side is the raw growth rate without damping and the right side the damping

rate. In above, ξ is the chromaticity, νβ ≈ 6.24 is the betatron tune, and only the tune
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Figure 11: As a positively charged bunch passes through a cavity, the image current

leaves a negative charge at the upstream end of the cavity gap. As the image

current resumes at the downstream side of the cavity, a positive charge is created

at the downstream end of the gap because of charge conservation, thus setting up

an electric field ~E and therefore the transient beamloading voltage.

Figure 12: In the design of the future Fermilab proton driver, the beam linear

charge density is monitored and fed into a tetrode, which supplies the same charge

density to the downstream end of the cavity gap. Thus the transient beamloading

voltage is cancelled.
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Figure 13: The two-particle model, where the bunch is represented by two macro-

particles each carrying half the charge of the bunch separated by a distance ẑ.

spread resulting from momentum spread has been included. Here, we assume a broadband

impedance with Q = 1, Z⊥ = 0.1 MΩ/m at the angular resonant frequency of ωr = 50 GHz.

The raw growth rates are 14.7×103 and 4.51×103 s−1, respectively, for the 4-cm bunch and

13-cm bunch. For stabilization, one requires |(nr − νβ)η + ξ| > 1.3 and 16, respectively, for

the two bunches. The phase-slip factor |η| = 1 × 10−6, however, is too small to contribute

any damping at all. But stability can still be maintained if the chromaticities are larger than

1.3 and 16. Octupoles can also be installed to provide additional amplitude-dependent tune

spread. In that case the amount of chromaticity for stabilization can be reduced. Since we

are interested in only 1000 turns, one may be able to tolerate a small growth if it is not too

serious.

VI. TRANSVERSE BEAM BREAKUP

Since bunch particles do not move much longitudinally with respect to the bunch center

during their lifetime, any off-axis particle will affect its followers constantly leading to beam

breakup in exactly the same way as a bunch traveling along a linac.

A. TWO-PARTICLE MODEL

Take the simple two-particle model in Fig. 13, by which the bunch is represented by two

macro-particles of charge 1
2
eN separated by a distance ẑ. The transverse displacements of

the head, y1, and the tail, y2, satisfy

d2y1

ds2
+
ν2
β1

R2
y1 = 0 , (6.1)

d2y2

ds2
+
ν2
β2

R2
y2 = −e

2NW1(σ`)

2CE
y1 , (6.2)

where s is the longitudinal distance measured along the on-momentum closed orbit, and

C = 2πR is the circumference of the collider ring. This model has been giving a reasonably
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accurate description to the beam breakup mechanism for short electron bunches when ẑ is

taken as twice the rms bunch length. The head oscillates as y1(s) = y10 cos(νβ1
s/R) and the

tail is initially at y2 = y10 with y′2 = 0. The displacement of the tail can be readily solved

and the result is

y2(s) = y10 cos
ν̄βs

R
cos

∆νβs

2R
−
[
e2NW1(ẑ)R

4πEν̄β
+ ∆νβ

] [
y10 sin

ν̄βs

R

] [sin ∆νβs/(2R)

∆νβ

]
, (6.3)

where ν̄β = 1
2
(νβ1 + νβ2) is the mean of the two betatron tunes of the head and tail. When

the tune difference ∆νβ = νβ2
−νβ1

approaches zero, the tail is driven resonantly by the head

and its displacement grows linearly with s:

y2(s) = y1(s)− e2NW1(ẑ)

8πEνβ

[
y10 sin

νβ1
s

R

]
s . (6.4)

In a length L, the displacement of the tail will grow by Υ folds, where [15]

Υ = −e
2NW1(ẑ)〈β〉L

8πER
. (6.5)

In the above, we have written νβ = R/〈β〉. This is because the transverse impedance initiates

a kick y′ of the beam and the size of the kicked displacement depends on the betatron function

at the location of the impedance. This can be easily visualized from the transfer matrix.

For a broadband impedance, the transverse wake function at a distance z behind the

source particle is, for z > 0,

W1(z) = −ω
2
rZ⊥
Qω̄

e−αz/c sin
ω̄z

c
, (6.6)

where Z⊥ is the transverse impedance at the angular resonant frequency ωr, which is shifted

to ω̄ =
√
ω2
r − α2 by the decay rate α = ωr/(2Q) of the wake. Let us introduce the dimen-

sionless variables

v =
ωrσ`
c

, t =
z

σ`
, and φ = vt cosφ0 =

ω̄z

c
, (6.7)

where the angle φ0 is defined as

cosφ0 =

√
1− 1

4Q2
or sin φ0 =

1

2Q
, (6.8)

assuming that Q > 1
2
. Then, the transverse wake in Eq. (6.6) can be rewritten as, for φ > 0,

W1(φ) = −2ωrZ⊥ tan φ0 sinφ e−φ tanφ0 , (6.9)
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Figure 14: Transverse wake function for a broadband impedance with Q = 1 in

units of ωrZ⊥ as a function of φ = ω̄z/c behind the source. With resonant angular

frequency ωr = 50 GHz, the position for z = 2σ` for the 4-cm bunch is marked,

and that for the 13-cm bunch is at φ = 37.5. The plot shows that some part of

the bunch other than the tail will be affected most.

The wake function decreases linearly from zero when φ = ω̄z/c� 1 and reaches a minimum

W1|min = −2ωrZ⊥ tanφ0 cosφ0 e
−(π2−φ0) tanφ0 (6.10)

at

φ =
π

2
− φ0 or

αz

c
=
(
π

2
− φ0

)
tan φ0 . (6.11)

After that it oscillates with amplitude decaying at the rate of α = ωr/(2Q), crossing zero

at steps of ∆φ = ω̄z/c = π. This is illustrated in Fig. 14. Notice that the position of the

minimum zmin = c
(
π
2
− φ0

)
/(ωr cosφ0) is much less than the rms bunch length, showing

that some part of the bunch other than the tail will be affected most.

In other words, the two-particle model is not so applicable in our situation where the

bunch is long and the resonant frequency is high. The two-particle model works well only

when the tail macro-particle lies within the linear part of the transverse wake, when φ or
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v � 1. Nevertheless, as an estimate, we can substitute W1 in Eq. (6.5) by its minimum

value and take νβ = 6.24. We find that the displacements of some particles along the bunch

will be doubled in ∼ 21 turns for the 4-cm bunch, which is possibly an overestimate.

For a bunch with linear density ρ(z), the transverse motion y(z, s) at a distance z behind

the bunch center and ‘time’ s is given by

d2y(z, s)

ds2
+
ν2
β

R2
y(z, s) = −e

2N

CE

∫ z

−∞
dz′ρ(z′)W1(z − z′)y(z′, s) . (6.12)

This equation can be solved first by letting y(z, s) be a free oscillation on the right-hand side

and solving for the displacement y(z, s) on the left-hand side. Then, iterations are made until

the solution becomes stable. Therefore, when Υ is large, the growth will be proportional to

powers of Υ and even exponential in Υ. Thus, 〈β〉Z⊥, ωr, as well as Q can be very sensitive

to the growth.

Simulations have been performed for the 4-cm and 13-cm bunches with a betatron tune

νβ ∼ 6.24, interacting with a broadband impedance with Q = 1 and Z⊥ = 0.1 MΩ/m at

the angular resonant frequency ωr = 50 GHz. Initially, a bunch is populated with a vertical

Gaussian spread of σy = 3 mm and y′ = 0 for all particles. There is no offset for the center

of the bunch. Ten thousand macro-particles are used to represent the bunch intensity of

4 × 1012. The half-triangular bin size is 15 ps (or 0.45 cm). In Figs. 15 and 16, we show

the total growth of the normalized beam size σy ≡ 〈y2 + (〈β〉y′)2〉1/2 relative to the initial

beam size up to 1000 turns for various values of 〈β〉, respectively, for the 13-cm and 4-cm

bunches. The turn-by-turn decay of the muons has been taken into account. We see that

the beam size grows very much faster for larger betatron function. Also the growths for

the 4-cm bunch are much larger than those for the 13-cm bunch because the linear charge

density of the former is larger.

B. TUNE SPREAD

Kim, Wurtele, and Sessler [16] suggested to suppress the growth of the transverse beam

breakup by a small tune spread in the beam, coming either through chromaticity, amplitude

dependency, or beam-beam interaction. This is because a beam particle will be resonantly

driven by only a small number of particles in front that have the same betatron tune.

To implement this, we add a detuning term

∆νβi = a[y2
i + (〈β〉y′i)2] (6.13)

to the i-th particle, as if it is contributed by an octupole or sextupole. In Figs. 17 and

18, we plot the growths of the normalized beam size relative to the initial beam size with
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Figure 15: Beam-breakup growth of the 13-cm bunch interacting with a broadband

impedance of Q = 1, Z⊥ = 0.1 MΩ/m at the angular resonant frequency of

ωr = 50 GHz. The total growths at 1000 turns reach 32.50, 7.4, 2.0, 1.09, 1.006,

respectively for 〈β〉 = 30, 25, 20, 15, 10 m.

various rms tune spreads σνβ = a〈σ2
y + (〈β〉σy′)2〉. Here, an average betatron function of

〈β〉 = 20 m has been used. This is because BPMs, which contribute significantly to the

transverse impedance, are usually installed at locations where the betatron function is large.

We see that to damp the growth of the 13-cm bunch to less than 1%, we need a rms tune

spread of σνβ = 0.0008 or a total tune spread of ∆νβ = 3σνβ = 0.0024. On the other hand, to

damp the growth of the 4-cm bunch to less than 1%, we need a rms tune spread of σνβ = 0.006

or a total tune spread of ∆νβ = 3σνβ = 0.024. However, if the transverse impedance is larger,

the average betatron function is larger, the resonant frequency is larger, or the quality factor

is smaller, this required tune spread may become too large to be acceptable. This is because

a large amplitude-dependent tune spread can lead to reduction of the dynamical aperture of

the collider ring.

For the lattice of the ring designed by Trbojevic and Ng [1], in order to allow for a larger
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Figure 16: Beam-breakup growth of the 4-cm bunch interacting with a broadband

impedance of Q = 1, Z⊥ = 0.1 MΩ/m at the angular resonant frequency of

ωr = 50 GHz. The total growths at 1000 turns reach 29713, 3361, 287, 16.2,

respectively for 〈β〉 = 25, 20, 15, 10 m.

enough momentum aperture, the amplitude-dependent tune shifts are

νβx = 8.126− 100εx − 4140εy

νβy = 6.240 − 4140εx − 50.6εy
(6.14)

for the on-momentum particles, where the unnormalized emittances εx and εy are measured

in πm. For the 4-cm bunch, the normalized rms emittance is εNrms = 85 × 10−6 πm. Since

the muon energy is 50 GeV, the unnormalized rms emittance is εrms = 1.80 × 10−7 πm,

and becomes 1.62 × 10−6 πm when 3σ are taken. Thus, the allowable tune spread for the

on-momentum particles is ∆νβ = 4140 εy = 0.0067. Tune spreads larger than this will lead

to much larger tune spreads for the off-momentum particles, thus reducing the momentum

aperture of the collider ring. For 4-cm bunch, to damp beam breakup to about 1% when

Z⊥ = 0.1 MΩ/m and 〈β〉 = 20 m, one needs ∆νβ = 0.024. However, we do not know exactly

what 〈β〉 and Z⊥ are. Simulations show that if 〈β〉Z⊥ becomes doubled, 2.5 times, 5 times,

and 10 times, the tune spreads required jump to, respectively,∼ 0.054, 0.073, 0.18, and 0.54.
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Figure 17: Total growth of the 13-cm bunch within the 1000 turns in the presence

of an amplitude dependent tune shift, such as provided by an octupole. The

maximum growths are 1.36, 1.08, 1.02, 1.007, respectively for rms tune spread of

σνβ = 0.0002, 0.0004, 0.0006, 0.0008. An average betatron function of 〈β〉 = 20 m

has been assumed.

Thus, it appears that pure tune spread may be able to damp beam breakup for the 13-cm

bunch but may not work for the 4-cm bunch. Although tune spreads due to chromaticity and

beam-beam interaction will also damp beam breakup, it is unclear how much the momentum

aperture will be reduced due to these tune spreads.

C. BALAKIN-NOVOKHATSKY-SMIRNOV DAMPING

The transverse beam breakup can be cured by varying the betatron tune of the beam

particles along the bunch, so that resonant growth can be avoided. In the two-particle model,

we can set

∆νβ = −e
2NW1(ẑ)R

4πEν̄β
, (6.15)

in Eq. (6.3), so that the tail will be oscillating in phase and with the same amplitude and
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Figure 18: Total growth of the 4-cm bunch within the 1000 turns in the presence

of an amplitude dependent tune shift, such as provided by an octupole. The

maximum growths are 1.23, 1.58, 1.08, 1.03, 1.012, respectively for rms tune spread

of σνβ = 0.002, 0.003, 0.004, 0.005, 0.006. An average betatron function of 〈β〉 =

20 m has been assumed.

tune as the head. The is known as Balakin-Novokhatsky-Smirnov (BNS) damping [17].

For a particle-distributed bunch, in order that all particles will perform betatron oscil-

lation with the same frequency and same phase after the consideration of the perturbation

of the transverse wake, special focusing force is required to compensate for the variation of

unperturbed betatron tune along the bunch. With the linear distribution ρ(z), the equations

of motion of Eq. (6.2) in the two-particle model generalize to

d2y(z, s)

ds2
+

[νβ + ∆νβ(z)]2

R2
y(z, s) = −e

2N

CE

∫ z

−∞
dz′ρ(z′)W1(z − z′)y(z′, s) , (6.16)

where z > 0 denotes the tail and z < 0 the head, or the bunch is traveling towards the

left. We need to choose the compensation ∆νβ(z) along the bunch in such a way that the

betatron oscillation amplitude

y(z, s) ∼ sin
(νβ
R
s+ ϕ0

)
(6.17)
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is independent of z, the position along the bunch, with ϕ0 being some phase, because only

in this way any particle will not be driven by a resonant force from any particle in front.

The solution is then simply

2νβ∆νβ + ∆ν2
β(z)

R2
= −e

2N

CE

∫ z

−∞
dz′ρ(z′)W1(z − z′) , (6.18)

or, for small compensation ∆νβ(z),

∆νβ(z)

νβ
= − e

2NR

4πν2
βE

∫ z

−∞
dz′ρ(z′)W1(z − z′) . (6.19)

If the linear bunch distribution ρ(z) is a Gaussian interacting with a broadband impedance,

the integration can be performed exactly to give

∆νβ(z)

νβ
=

e2NR

4πν2
βE

ω2
rZ⊥

2ω̄Q
e−z

2/(2σ2
`
) Imw

[
vejφ0

√
2
− jz√

2σ`

]
, (6.20)

where w is the complex error function while sinφ0 = 1/(2Q) and v = ωrσ`/c as defined in

Eqs. (6.7) and (6.8). For long bunches and high resonant frequency, or v � Q, the complex

error function behaves as

w(z) =
j√
πz

+O
(

1

|z|3

)
. (6.21)

This is certainly satisfied by both the 4-cm and 13-cm bunches, where v = 6.67 and 21.7,

respectively. Then, the relative tune-shift compensation in Eq. (6.20) can be simplified to

∆νβ(z)

νβ
≈ e2NωrZ⊥R

2(2π)3/2ν2
βQvE

[
1 +

z

vQσ`

]
e−z

2/(2σ2
` ) . (6.22)

The relative tune-shift compensations required for the two bunches are shown in Fig. 19. Note

that in Eq. (6.22), vQ controls the asymmetry of the tune-shift compensation curve. When

vQ → ∞, there is no asymmetry and the compensation curve reduces to just a Gaussian,

and, at the same time, ∆νβ/νβ decreases to zero. On the other hand, when v � Q for short

bunches and low broadband resonant frequency, the relative tune-shift becomes rather linear

as depicted by the v = 0.3 curve in Fig. 20. The curve for the 4 cm bunch (v = 6.67) is

also shown for comparison. This is the situation for BNS damping of short electron bunches,

which is very different from the BNS damping for the muon bunches that we discuss here.

To cure beam breakup with BNS damping in an electron linac, the electron bunch is

usually placed near the crest of the rf wave so that the head and tail of the bunch will

acquire slightly different energies, and therefore slightly different betatron tunes through
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Figure 19: Relative tune shift compensation for beam particles at distance z/σ`

behind the bunch center (or bunch going to the left) to cure beam breakup for the

4-cm and 13-cm bunches. The bunch profile is plotted in dashes as a reference.

chromaticity. For muon bunches in the collider ring, however, this method cannot be used.

A rf quadrupole must be installed and pulsed according to the compensation curve for

each bunch as the bunch is passing through it. The tune-shift compensation is fitted by a

superposition of two sinusoids with frequencies fi = ωi/(2π),

∆νβ
νβ

=
2∑
i=1

(
∆νβ
νβ

)
i

cos
(
ωiz

c
+ ϕi

)
. (6.23)

The best fits for the two bunches are listed in Table III. If a rf quadrupole of length ` is

built for the tune compensation, the magnetic flux gradient is

B′(t) = B′0 cos(ωt+ ϕ) , (6.24)

where B′0 is the maximum magnetic flux gradient. Suppose the center of the bunch passes

through the quadrupole at time t = 0. A beam particle at distance z behind the bunch

center when t = 0 travels according to z′ = −z + ct. Thus, the integrated magnetic flux
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Figure 20: Relative tune shift compensation for beam particles at distance z/σ`

behind the bunch center (or bunch going to the left) to cure beam breakup for

a short bunch interacting with a broadband impedance at lower frequency, v =

ωrσ`/c = 0.3. The curve for the 4-cm bunch, where v = 6.67, is plotted as

comparison. Note that when v is small, the compensation is more linear, or is of

much lower frequency.

Table III: Two-sinusoidal fits for tune-shift compensation.

(∆νβ/νβ)i harmonic fi (GHz) ϕi (rad)

4-cm bunch 2.074× 10−4 794 0.680 0.0847

5.828× 10−5 2452 2.100 0.2595

13-cm bunch 5.993× 10−5 224 0.192 0.0252

2.031× 10−5 694 0.594 0.0716
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Table IV: Magnetic flux densities or Electric field required for the rf quadrupoles

compensating for the 4-cm bunch.

Frequency Magnetic flux Pole-tip Electric field Pole-tip Pole-tip

gradient flux density gradient E field potential

f (GHz) B′0 (T/m) B0 (T) E′0 (MV/m2) E0 (MV/m) V0 (MV)

0.680 1.48 0.0370 443 11.1 0.138

2.100 1.04 0.0259 311 7.78 0.097

gradient sampled by this particle is∫ `/2

−`/2
B′(t)dz′ =

∫ `/2

−`/2
dz′B′0 cos

(
ωz′

c
+ ϕ+

ωz

c

)
= B′0` cos

(
ωz

c
+ ϕ

){
sin[ω`/(2c)]

ω`/(2c)

}
.

(6.25)

The actual magnetic flux gradient has been diminished by the transit factor in the curly-

bracketed term. Care must be taken in choosing the length of the quadrupole so that the

transit factor will not be too small. If quadrupole lengths of ` = 10 cm are used, the transit

factors are 0.917 and 0.367, respectively, for frequencies 0.680 and 2.10 GHz. Take the 4-cm

bunch as an example. If the rf quadrupoles for the two frequencies are placed at locations

where the betatron function β = 20 m, the magnetic flux gradients are given by

B′0

{
sin[ω`/(2c)]

ω`/(2c)

}
=

4π∆νβ(Bρ)

β`
. (6.26)

For the 50-GeV muons, the magnetic rigidity is Bρ = 166.78 T/m. The betatron tune is

taken as νβ ≈ 6.24. The maximum flux gradients B′0 and pole-tip flux densities B0 are

listed in the second and third columns of Table IV, where an aperture of ra = 2.5 cm

has been assumed for the quadrupoles. Obviously, iron-core quadrupoles cannot be used.

Even air-core quadrupoles may not have the rise time that is fast enough at 2.1 GHz. One

suggestion is to resort to electric quadrupoles rather than a magnetic one. However, electric

quadrupoles will not be efficient in focusing an ultra-relativistic beam. Nevertheless, the

equivalent electric field gradients are given by

E′0 = cB′0 . (6.27)

The electric fields at the poles are E0 = E′0ra and the voltage at the poles are V0 = 1
2
E′0r

2
a.

These are listed in the fourth, fifth, and sixth columns of Table IV.

Another possibility is to design cavities with resonating quadrupole modes. For example,

the TM210 modes of cylindrical pill-box cavities will serve the purpose. The cavities, each of
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width 10 cm, have radii

R =
x21c

ωr
= 36.0 and 11.7 cm , (6.28)

respectively, for the resonant frequencies ωr/(2π) = 0.680 and 2.10 GHz, where x21 = 5.135

is the first zero of the Bessel function of order 2. The longitudinal electric field is

Ez = E0J2

(
x21r

R

)
cos 2θ , (6.29)

where θ is the azimuthal angle around the beam axis and the time dependency has been

suppressed. The azimuthal magnetic flux density is

Bθ =
jE0

ωr
J ′2

(
x21r

R

)
x21

R
cos 2θ , (6.30)

where the factor j indicates that the magnetic flux density is 90◦ out of phase with the

electric field. Thus, along the x-axis slightly offset from the center axis of the cavity,

B′y ≈
jE0

ωr

x2
21

R2
, (6.31)

and this must equal to the required electric field gradient E′0 given by Eq. (6.27) divided by

c. The maximum longitudinal electric field is therefore given by

|E0| [J2]max =
4c

ωr
E′0 [J2]max =

 59.9 MV/m

13.6 MV/m
, (6.32)

for the two frequencies of 0.680 and 2.10 GHz, where use has been made of Eq. (6.28) and

that fact that the Bessel function J2 has a maximum of 0.482. These electric fields correspond

to 2.47 and 0.342 Kilpatrick limits, respectively, for the cavity frequencies. Since the TM0n0

modes of the cavities are not to be used in BNS damping, they should be eliminated by

absorbers or dampers so that no beamloading will result as the muon bunches are passing

through them. Otherwise, a feed-forward scheme discussed in Sec. C. must be used so that

transient beamloading can be eliminated.

VII. CONCLUSION

An impedance budget has been estimated for the 50GeV-50GeV muon collider ring. If a

broadband impedance model is assumed, we find that, for such a collider ring, it will be hard

to reduce ImZ‖/n to below 0.5 Ω and ImZ⊥ to below 0.1 MΩ/m. The resonant angular

frequency has been chosen to be ωr = 50 GHz, because it has been reported that Z‖/n does
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not roll off up to even f = 10 GHz (or angular frequency 62 GHz) for the CERN LEP and

the SLAC damping rings.

The phase-slip factor and its spread have been chosen to be 1× 10−6 so that there will

be negligibly small phase drifting during the lifetime of the muons. As a result, no bunching

rf will be needed in the absence of coupling impedance. At the same time, any growth due

to microwave instability can be made small.

Because of the high intensity of the bunches, potential-well distortion is extremely serious.

This is compensated by using rf voltages so that their sum is equal and opposite to the wake

potential of the bunch. However, these rf’s can only compensate for potential-well distortion

for a smooth bunch interacting with a smooth frequency dependent longitudinal impedance.

Any imperfection in the bunch profile and deviation of the coupling impedance from a

broadband will lead to accumulated growth in energy fluctuations. Since we are interested

mostly in the first 1000 turns the muons made inside the collider ring, the actual accumulated

growth depends very critically on the initial imperfection of the linear distribution of the

bunch. If there is a way to smooth the linear distribution after ionization cooling and

acceleration before injection into the collider ring, the accumulated growth for 1000 turns

should be tolerable.

The compensating rf cavities cannot reduce the growth rate of microwave instability.

However, they can lower the total microwave growth by reducing the ripples in the bunch

and thus the seeds of the growth. In addition, the finite lifetime of the muons and the

choice of the small slippage factor also help in making the microwave growth small and less

important.

The beamloading voltages in these compensating cavities are found to be comparable to

the wake-potential voltages they are supposed to cancel. A suggestion is to feed-forward via

a tetrode an equal amount negative charge density onto the appropriate end of the cavity

gaps so that the beamloading voltage will be cancelled.

Transverse microwave instabilities can be damped by chromaticities in both transverse

planes. They can also be damped by installation of octupoles so that amplitude-dependent

tune spread can be introduced.

Beam breakup is a severe issue for the muon bunches in the collider ring. If the growth

is not too large, like that of the 13-cm bunch, it can be cured by introducing a tune spread

in the bunch, either through chromaticity or amplitude dependency. The beam breakup is

more serious for the 4-cm bunch because of its higher linear density. A pure tune spread

may not be sufficient to cope with the problem and BNS damping is required. However, the

actual implementation is nontrivial. This is because of the relative long bunch length. A
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very fast pulsing (∼ns) rf quadrupole will be required. We find that cavities operating in

the TM210 modes can be used for the compensation of the BNS tune shifts.
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